Predictive Variable Gain Iterative Learning Control for PMSM
نویسندگان
چکیده
منابع مشابه
Improved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملLearning Model Predictive Control for Iterative Tasks
A Learning Model Predictive Controller (LMPC) for iterative tasks is presented. The controller is referencefree and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nonincreasing performance at each iteration. The paper presents the control design approach, and shows how to r...
متن کاملIterative Learning Economic Model Predictive Control
An iterative learning based economic model predictive controller (ILEMPC) is proposed for repetitive tasks in this paper. Compared with existing works, the initial feasible trajectory of the proposed ILEMPC is not restricted to be convergent to an equilibrium so it can handle various types of control objectives: stabilization, tracking a periodic trajectory and even pure economic optimization. ...
متن کامل2d Model Predictive Iterative Learning Control Schemes for Batch Processes
Iterative learning control (ILC) system is modelled and treated as a 2D system in this paper. Based on single-batch and multi-batch cost functions, 2D model predictive iterative learning control (2D-MPILC) schemes are developed in the framework of model predictive control (MPC) for the 2D system. Structure analysis shows that the resulted 2D-MPILC laws are causal and they implicitly combine a t...
متن کاملFast Iterative Learning Control for Delay Systems: A Predictive Approach
In a previous paper (Li et al. (2005)), an iterative learning control (ILC) law, proposed for linear continuous systems with a single time delay, has the ability to drive the output tracking error to zero only after one learning iteration. The convergence result is quite attractive; however, it requires unavailable system state. The aim of this paper is to provide a predictive approach to not o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Control Science and Engineering
سال: 2015
ISSN: 1687-5249,1687-5257
DOI: 10.1155/2015/353712